Altula Chile

El mejor catálogo de libros en formatos PDF, EPUB y MOBI

Cubiertas y envolventes en categorías de representaciones

Descripción del libro

Libro Cubiertas y envolventes en categorías de representaciones

La tesis queda enmarcada en el contexto del álgebra homológica y la teoría de anillos y más concretamente en la teoría de cubiertas y envolventes en categorías de representaciones. La idea de aproximar módulos, tanto por la izquierda como por la derecha, se remonta al año 1953 en el cual Eckman y Schopf prueban que todo módulo admite una aproximacióon minimal a izquierda por un módulo inyectivo, esto es, tiene una envolvente inyectiva. A su vez Bass caracterizó los anillos para los cuales todo módulo se puede aproximar a la derecha de manera minimal: los anillos perfectos. La formulación general de cubiertas y envolventes referidas a una clase arbitraria de módulos es debida a Enochs en el año 1981. Dada una clase F de módulos cerrada bajo isomorfismos, una F -precubierta (o aproximación a derecha) de un módulo M es un morfismo & : F & M de forma que para cualquier otro morfismo &' : F '&&M con F ' & F existe un tercer morfismo f : F ' & F tal que & of = &', esto es, el morfismo canónico Hom(F ', F) & Hom(F ', M), es sobreyectivo. La F-precubierta se dice que es una F-cubierta (o una aproximación minimal a derecha) cuando para cada g : F & F tal que & o g = & se tiene que g es un automorfismo. El concepto de F -(pre)envolvente se define de manera dual. En el mismo artículo donde aparecen estas definiciones, Enochs formula lo que se conoce como “la conjetura de la cubierta plana” que afirma que todo m ́odulo admite una cubierta plana, es decir, una cubierta referida a la clase formada por todos los módulos planos . Esta conjetura ha sido resuelta recientemente en 2001 de dos formas distintas. Nuestro primer objetivo en la tesis es desarrollar una teoría general de cubiertas y envolventes en un marco suficientemente amplio como es el de las categorías de Grothendieck sin suficientes proyectivos. Este estudio está motivado porque una de las categorías más importantes en el ámbito de la geometría algebraica como es la de haces quasi-coherentes sobre un esquema de anillos, se ajusta a este marco. En este sentido probamos que todo haz quasi-coherente admite una cubierta plana y una envolvente cotorsión, esto es, la conjetura de la cubierta plana sigue siendo cierta en esta situación. El resultado adquiere una mayor relevancia por el hecho de no tener suficientes proyectivos en la categoría, puesto que la existencia de cubiertas planas, y así de suficientes planos, viene en cierta medida, desde un punto de vista homológico, a suplir la carencia de aquellos. Nuestro punto de vista a la hora de tratar los haces quasi-coherentes es por medio de las representaciones de quivers. Así, de este modo, el estudio, tratamiento y desarrollo de técnicas para tales categorías va a constituir otro de los puntos fundamentales durante la memoria, no sólo por su relevancia en el ámbito posterior de los haces quasi-coherentes, sino de manera independiente por la importancia que este tipo de categorías desempeñan en la teoría de representación de álgebras. Otro de los ejes principales en la tesis es el estudio del grupo de automorfismos que tiene asociado toda cubierta (o envolvente) de un objeto. Este tipo de grupos aparece de forma natural en la teoría clásica de Galois de extensiones de cuerpos, así como en topología algebraica cuando hablamos de morfismos recubridores. Por este motivo los denominamos grupo de Galois (cuando nos referimos a una envolvente) o de coGalois (para el correspondiente a una cubierta). Sobre tales grupos encontramos una reducción no trivial a la hora de calcularlos, lo cual nos permitirá describir su estructura en algunas situaciones. Este es el caso de los grupos de coGalois compactos asociados a cubiertas libres de torsión sobre grupos abelianos, para los cuales hay definida una topología de forma canónica.

Información del libro

Cantidad de páginas 160

Autor:

  • Sergio Estrada Domínguez

Categoría:

Formatos Disponibles:

MOBI, PDF, EPUB, AZW

Descargar Ebook

Valoración

Popular

3.5

27 Valoraciones Totales


Más libros de la categoría Matemáticas

Series y Transformada de Fourier para Señales Continuas y Discretas en el Tiempo

Libro Series y Transformada de Fourier para Señales Continuas y Discretas en el Tiempo

Este libro es una contribución fruto de la experiencia en el diseño y desarrollo de algoritmos para el análisis de señales e imágenes digitales. En la época actual, es de gran importancia el incentivo de los medios informáticos. Estos permiten ahorrar tiempo y esfuerzo en la generación de datos que permitan demostrar una teoría o el análisis de un fenómeno. Este material permite a estudiantes y profesores, mediante el uso de asistentes matemáticos, implementar y probar algoritmos basados en la Transformada de Fourier.

Satán, Cantor y el infinito

Libro Satán, Cantor y el infinito

In this new series of riddles, we will make a tour through fantastic situations with the Wizard, who will make demonstrations of "logical witchcraft" for us and take us to an island of intelligent robots that reproduce themselves to the infinitum; also, he will show us how Satan was cheated by a Cantor's pupil.

Álgebra y aplicaciones para Bachilleratos Tecnológicos

Libro Álgebra y aplicaciones para Bachilleratos Tecnológicos

Álgebra y aplicaciones para bachilleratos tecnológicos de Eduardo Carpinteyro Vigil aborda en su totalidad el programa de estudios actualizado de la materia y mantiene el enfoque pedagógico por competencias. La obra se inscribe en el eje Del pensamiento aritmético al lenguaje algebraico, se ha organizado en cuatro partes con sus respectivos contenidos centrales y específicos. En cada parte se integran interesantes actividades para realizar de manera individual y en trabajo colaborativo y cooperativo. También se integran pro-puestas de actividades socioemocionales. La obra incluye un...

Fundamentos matemáticos de la ingeniería I. Problemas resueltos de examen 2006-2009

Libro Fundamentos matemáticos de la ingeniería I. Problemas resueltos de examen 2006-2009

Este libro recopila problemas de examen propuestos en la asignatura Fundamentos Matemáticos de la Ingeniería I, en Ingeniería Técnica de Telecomunicaciones de la Escuela Superior de Ingeniería. Esta asignatura aborda una gran variedad de temas e introduce al estudiante en varios ámbitos de las matemáticas. El libro consta de 13 capítulos que agrupan ejercicios de examen por temas: introducción a los números complejos, estudio de funciones reales de una y varias variables, sucesiones y series numéricas, introducción al álgebra, estudio de la integración real simple y múltiple, y ...

Últimas novedades en libros



Últimas Búsquedas


Categorías Destacadas