Altula Chile

El mejor catálogo de libros en formatos PDF, EPUB y MOBI

Cubiertas y envolventes en categorías de representaciones

Descripción del libro

Libro Cubiertas y envolventes en categorías de representaciones

La tesis queda enmarcada en el contexto del álgebra homológica y la teoría de anillos y más concretamente en la teoría de cubiertas y envolventes en categorías de representaciones. La idea de aproximar módulos, tanto por la izquierda como por la derecha, se remonta al año 1953 en el cual Eckman y Schopf prueban que todo módulo admite una aproximacióon minimal a izquierda por un módulo inyectivo, esto es, tiene una envolvente inyectiva. A su vez Bass caracterizó los anillos para los cuales todo módulo se puede aproximar a la derecha de manera minimal: los anillos perfectos. La formulación general de cubiertas y envolventes referidas a una clase arbitraria de módulos es debida a Enochs en el año 1981. Dada una clase F de módulos cerrada bajo isomorfismos, una F -precubierta (o aproximación a derecha) de un módulo M es un morfismo & : F & M de forma que para cualquier otro morfismo &' : F '&&M con F ' & F existe un tercer morfismo f : F ' & F tal que & of = &', esto es, el morfismo canónico Hom(F ', F) & Hom(F ', M), es sobreyectivo. La F-precubierta se dice que es una F-cubierta (o una aproximación minimal a derecha) cuando para cada g : F & F tal que & o g = & se tiene que g es un automorfismo. El concepto de F -(pre)envolvente se define de manera dual. En el mismo artículo donde aparecen estas definiciones, Enochs formula lo que se conoce como “la conjetura de la cubierta plana” que afirma que todo m ́odulo admite una cubierta plana, es decir, una cubierta referida a la clase formada por todos los módulos planos . Esta conjetura ha sido resuelta recientemente en 2001 de dos formas distintas. Nuestro primer objetivo en la tesis es desarrollar una teoría general de cubiertas y envolventes en un marco suficientemente amplio como es el de las categorías de Grothendieck sin suficientes proyectivos. Este estudio está motivado porque una de las categorías más importantes en el ámbito de la geometría algebraica como es la de haces quasi-coherentes sobre un esquema de anillos, se ajusta a este marco. En este sentido probamos que todo haz quasi-coherente admite una cubierta plana y una envolvente cotorsión, esto es, la conjetura de la cubierta plana sigue siendo cierta en esta situación. El resultado adquiere una mayor relevancia por el hecho de no tener suficientes proyectivos en la categoría, puesto que la existencia de cubiertas planas, y así de suficientes planos, viene en cierta medida, desde un punto de vista homológico, a suplir la carencia de aquellos. Nuestro punto de vista a la hora de tratar los haces quasi-coherentes es por medio de las representaciones de quivers. Así, de este modo, el estudio, tratamiento y desarrollo de técnicas para tales categorías va a constituir otro de los puntos fundamentales durante la memoria, no sólo por su relevancia en el ámbito posterior de los haces quasi-coherentes, sino de manera independiente por la importancia que este tipo de categorías desempeñan en la teoría de representación de álgebras. Otro de los ejes principales en la tesis es el estudio del grupo de automorfismos que tiene asociado toda cubierta (o envolvente) de un objeto. Este tipo de grupos aparece de forma natural en la teoría clásica de Galois de extensiones de cuerpos, así como en topología algebraica cuando hablamos de morfismos recubridores. Por este motivo los denominamos grupo de Galois (cuando nos referimos a una envolvente) o de coGalois (para el correspondiente a una cubierta). Sobre tales grupos encontramos una reducción no trivial a la hora de calcularlos, lo cual nos permitirá describir su estructura en algunas situaciones. Este es el caso de los grupos de coGalois compactos asociados a cubiertas libres de torsión sobre grupos abelianos, para los cuales hay definida una topología de forma canónica.

Información del libro

Cantidad de páginas 160

Autor:

  • Sergio Estrada Domínguez

Categoría:

Formatos Disponibles:

MOBI, PDF, EPUB, AZW

Descargar Ebook

Valoración

Popular

3.5

27 Valoraciones Totales


Más libros de la categoría Matemáticas

Problemas y ejercicios de análisis matemático

Libro Problemas y ejercicios de análisis matemático

Este libro, resultado de largos anos de ensenanza de la disciplina por parte de sus acreditados autores en los centros de ensenanza tecnica rusos, contiene mas de 3.000 problemas y ejercicios de analisis matematico, con sus soluciones, que abarcan todos los conceptos fundamentales de gran utilidad para el alumno que comienza sus estudios universitarios o tecnicos. Se ha prestado especial interes a las partes que, por ser mas importantes, requieren una mayor practica (determinacion de limites, derivadas, construccion de curvas, integrales indefinidas y definidas, series y ecuaciones...

Neutrosophics Computing and Machine Learning, Book Series, Vol. 8, 2019

Libro Neutrosophics Computing and Machine Learning, Book Series, Vol. 8, 2019

"Neutrosophic Computing and Machine Learning" (NCML) es una revista académica que ha sido creada para publicaciones de estudios avanzados en neutrosofía, conjunto neutrosófico, lógica neutrosófica, probabilidad neutrosófica, estadística neutrosófica, enfoques neutrosóficos para el aprendizaje automático, etc. y sus aplicaciones en cualquier campo.

Juan Caramuel

Libro Juan Caramuel

En 1670, el autor español Juan Caramuel publicó en Italia el segundo tomo de una magna obra, Mathesis biceps (publicada en latín), sobre el saber matemático de su época. En el mismo se incluía un capítulo (un "sintagma" según el propio Caramuel), titulado Kybeia ("juegos de dados" en griego), donde el autor introduce su idea del origen del juego y resuelve algunos problemas relacionados con los mismos, convirtiéndose en una de las obras tempranas sobre cálculo de probablidades. En este texto se da un repaso a los antecedentes al trabajo de Caramuel relacionados con el cálculo de...

Introducción al álgebra conmutativa

Libro Introducción al álgebra conmutativa

Este libro tuvo su origen en un curso de lecciones dadas a los alumnos de la Universidad de Oxford y está destinado a estudiantes que aparte de los estudios básicos de Algebra lineal y Calculo, hayan seguido un curso introductorio de Algebra, y que además tenga una cierta disposición para el razonamiento abstracto.

Últimas novedades en libros



Últimas Búsquedas


Categorías Destacadas